ERRATA

Keiji Kainuma and Dexter French, Action of pancreatic amylase on starch oligosaccharides containing single glucose side chains, FEBS Letters 5 (1969) 257.

Scheme 1 should be as follows:

Scheme 1
Preparation of stubbed oligosaccharides.†

0-00-0	acid	0-00-0	gluco-
V		+	
0-00-0-0	hydrolysis	0-00-0-0Ø	amylase
branch region in		branched	
starch molecule		dextrin	
0			
↓			
0-0∅			
stubbed			
oligosaccharide			

† Symbols and abbreviations: 0, D-glucose unit;-, & 1,4 bond; \$\display \cdot \cdot

Scheme 2 should be as follows:

Whereever "procine" appears, it should read "porcine".

p. 260, column 1, last but one line from - "No products" to the end of of the page should read:

No products are produced in the penta- or hexasaccharide range. A distinct heptasaccharide band is produced by the following reactions:

Traces of compounds moving as penta- and hexasaccharide remain unattacked by the amylase. Presumably these compounds are doubly-stubbed components of the original mixture:

The chromatogram shows a weak indistinct band of products with chromatographic mobility slightly less than the doubly-stubbed heptasaccharide. At present this remains unidentified. We presume that it is not the doubly-stubbed octasaccharide:

which would be expected to have a substantially lower mobility. Admittedly, resolution of 2-dimensional chromatograms is poor in this low-mobility region and so we cannot rigorously exclude the possibility that the indistinct band is the doubly-stubbed octasaccharide. If it were, however, one would expect it to be produced in amounts more nearly comparable with the doubly-stubbed heptasaccharide. Therefore, we tentatively conclude that this octasaccharide is cleaved by amylase as follows:

Absence of a stubbed pentasaccharide band indicates that the glucoamylase treatment has removed all structures of the following type:

Reference [11] should read:

W.J.Whelan and P.M.Taylor, Arch. Biochem. Biophys. 113 (1966) 500.